
Predictability-Based Curiosity-Guided Action
Symbol Discovery

Burcu Kilic
Department of Computer Engineering

Bogazici University
Istanbul, Turkey

burcu.kilic@std.bogazici.edu.tr

Alper Ahmetoglu
Intelligent Robot Lab

Brown University
Providence, Rhode Island, US

aahmetog@cs.brown.edu

Emre Ugur
Department of Computer Engineering

Bogazici University
Istanbul, Turkey

emre.ugur@bogazici.edu.tr

Abstract—Discovering symbolic representations for skills is
essential for abstract reasoning and efficient planning in robotics.
Previous neuro-symbolic robotic studies mostly focused on discov-
ering perceptual symbolic categories given a pre-defined action
repertoire and generating plans with given action symbols. A
truly developmental robotic system, on the other hand, should
be able to discover all the abstractions required for the planning
system with minimal human intervention. In this study, we
propose a novel system that is designed to discover symbolic
action primitives along with perceptual symbols autonomously.
Our system is based on an encoder-decoder structure that takes
object and action information as input and predicts the generated
effect. To efficiently explore the vast continuous action parameter
space, we introduce a Curiosity-Based exploration module that
selects the most informative actions—the ones that maximize
the entropy in the predicted effect distribution. The discovered
symbolic action primitives are then used to make plans using
a symbolic tree search strategy in single- and double-object
manipulation tasks. We compare our model with two baselines
that use different exploration strategies in different experiments.
The results show that our approach can learn a diverse set of
symbolic action primitives, which are effective for generating
plans in order to achieve given manipulation goals.

Index Terms—neuro-symbolic robotics, symbol emergence, in-
trinsic motivation

I. INTRODUCTION

Humans and animals have the ability to perform abstract
reasoning about their environments by learning abstract rep-
resentations of actions and objects. For this, infants acquire
high-level skills primarily by exploring their environment
out of intrinsic curiosity, without an extrinsic end goal or
rewards. Inspired by human developmental processes, we aim
to demonstrate such autonomous exploration and high-level
skill discovery in robotic agents. We present a robotic agent
that can learn object and action abstractions by predicting the
effects of its actions and exploring while trying to reduce its
uncertainty in the predictions; in other words, exploring out
of curiosity.

Symbolic representations of skills can enhance a robot’s
ability to reason and plan [1], [2]. Abstracting continuous
sensorimotor information into discrete symbolic representa-
tions can simplify complex decision-making processes. These
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abstractions enable a robot to have better generalizable and
transferable skills. Symbolic action primitives are utilized in
symbolic planning, an effective method for efficiently gener-
ating action sequences to reach a specific goal state.

Previous neuro-symbolic robotic approaches [3]–[5] have
shown success in learning object categories and relational ob-
ject symbols from the bottleneck layer of an effect prediction
encoder-decoder network. In [6], symbolic planning was per-
formed using Planning Domain Description Language (PDDL)
[7] with learned object symbols and a set of predefined abstract
actions. However, these studies depend on manually defined
discrete actions, and there is no autonomous skill discovery
part.

A real cognitive developmental system, on the other hand,
should have the ability to discover high-level discrete actions
as well. In an early study, a robot was initialized with a
basic reach-and-grasp movement capability, discovering a set
of action primitives by exploring its action parameter space
and applying clustering in its tactile measurements [8], [9].
However, the learned primitives were not used in high-level
planning. More recently, [10], [11] framed the problem as
an operator learning problem in their Task and Motion Plan-
ning (TAMP) framework. They proposed a neuro-symbolic
relational transition model where a task plan was generated
using symbolic planning, and then a neural network was
used to search for the low-level operator parameters during
execution. [12] learned action primitives, providing a bi-level
operator learning stack. However, these methods followed
an algorithmic approach in learning operators, whereas we
proposed to use a generic neural network for object and action
symbol discovery.

The studies reviewed above mostly relied on random explo-
ration. It is known that infants benefit from intrinsic motivation
to more efficiently explore their environment [13]. Similar
ideas have been applied in artificial intelligence and robotics.
[14] provided rewards to agents for actions that give high
information gain, [15] used the state entropy as an intrinsic
reward, [16] used learning progress (LP) [17] for exploration
guiding in reinforcement learning, [18], [19] used LP for
exploration region selection in object-action-effect spaces, and
[20] used the error from the effect prediction model as a reward
signal to the action policy network. In our study, we propose to



select actions that maximize the entropy in our model, which
predicts the effects of actions.

The aim of this work is to find discrete action primitives
that are effective in planning. For this, significantly extending
our object symbol discovery framework [3], we propose a
predictive encoder-decoder neural network, which takes action
parameters and object features as input and generates action
effects as output, is proposed. The core idea is to binarize
the embeddings in the bottleneck layer, enabling symbolic
planning. We also propose to guide the exploration of the
robot by a curiosity signal, which depends on the entropy of
the neural network output activation. Finally, after a sequence
of actions is generated via a tree-based symbolic planner, the
continuous parameters of the corresponding action are found
using a gradient-based method, which freezes network weights
and applies a search in the action parameter space.

We used a manipulation robot with a gripper in a simu-
lated environment for experimental verification. Exploring the
parameter space of a reach action, our method discovered
a diverse set of action primitives such as grasp, grasp and
place, pull, and push in different directions. We used these
primitives to generate symbolic plans to bring an object to
a goal position and execute the actions with the proposed
parameter distillation procedure. We also showed that our
curiosity-based exploration overperformed the baselines, using
other exploration strategies. In the rest of this paper, we first
provide the details of our proposed method, then give the
experimental setup and the baselines, and finally provide the
experimental results.

II. PROPOSED METHOD

We provide the sensorimotor representation, followed by
the predictive encoder-decoder network, continuous action
parameterization, curiosity-based exploration module, and the
planner. An overview of our proposed method can be seen in
Figure 1.

A. Sensorimotor Representation

Each object o ∈ R4 is represented as o = [sx, sy, d, t] where
sx, sy, d denotes the object’s dimensions in different axes, and
t corresponds to the type of the object. A state s ∈ R4×m is the
state of the environment with m objects. The object features,
which are used as the input of the predictive neural network,
correspond to the target object’s features.

The robotic action a ∈ R12 is a continuous vector con-
catenating the start, middle, and end points of the robot’s
trajectory.

a = [p1, p2, p3], pi = [xi, yi, zi, gi] ∈ R4, i = 1, 2, 3. (1)

Here, xi, yi, zi denote the coordinates of the robot relative
to the target object, and gi is a parameter that defines the state
of the gripper. The gripper is open if gi >= 0.5 and closed
otherwise.

The effect e ∈ R3 of an action denotes the change in the
target object’s absolute position, e = [∆xo

t ,∆yot ,∆zot ].

Fig. 1. Overview of the proposed method. The effect prediction model is
an encoder-decoder deep neural network that predicts a distribution over
the effect. The entropy of the distribution is given to the curiosity-based
exploration module to guide the action selection process. The object is
randomly initialized in the environment. The symbols are generated via
binarization of the bottleneck layer of the effect prediction model.

B. Discovering Symbols in Predictive Encoder-Decoder Net-
work

1) Extracting Symbols: In our effect prediction model, we
aim to extract action and object symbols from the bottleneck
layer of the encoder-decoder deep neural network. Specifically,
we propose to learn a mapping ϕo : R4 → Rj in the
object encoder and a mapping ϕa : R12 → Rk in the
action encoder, discretizing the continuous outputs of these
encoders into discrete symbols using a binary step function.
After binarization, we obtain discrete representations for both
the action and the object:

zo = b(ϕo(o)) ∈ {0, 1}j , za = b(ϕa(a)) ∈ {0, 1}k. (2)

2) Predictive Encoder-Decoder Network Architecture: The
core of the architecture is a deep neural network with separate
object and action encoders, followed by a single decoder,
as shown in Figure 2. The network predicts a Gaussian
distribution over the effect given action parameters and object
features:

p(e | a, o) = N (e;µ(a, o), σ2(a, o)) (3)

The action and object encoders have an initial Batch Nor-
malization layer. They consist of four hidden layers, the first
three of which are linear layers with ReLU activation, and
the final layer, which is a linear layer with Tanh activation
function. The tanh activation function ensures the embeddings
are between -1 and 1.

The decoder is a 4-layer perceptron with linear layers and
ReLU activation in the hidden layers. It takes the concatenated



object and action embeddings z = [zo, za]. Layer Normal-
ization is applied to the concatenated embeddings to ensure
a stable distribution before further processing. In the final
linear layer, the decoder predicts a mean µ and log variance
log(σ2) for each of the x, y, and z axes, thereby creating three
independent normal distributions over the predicted effect
shown as Equation 4. Dropout is applied to all the hidden
layers in the model for regularization. The predicted effect as
network output is calculated as follows.

p(x | µ, σ2) =
1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
. (4)

Based on the predicted and observed effects, the negative
log-likelihood (NLL) loss is used:

LNLL(x) = − log p(x | µ, σ2) =
1

2
log(2πσ2) +

(x− µ)2

2σ2
.

(5)
To effectively extract distinct symbols from the latent space,

we need to push the embeddings of different actions from each
other and pull similar ones together. For this, we used Nor-
malized Temperature-Scaled Cross Entropy (NT-Xent) Loss
[21]. The concatenated action and object embeddings are
normalized for a batch of N samples. With the normalized
embeddings z̃i = zi

∥zi∥ and temperature τ , we define the
similarity as follows:

sij = z̃⊤i z̃j . (6)

The NT-Xent loss is then

LNT-Xent = − 1

N

N∑
i=1

log
exp

(
sii
τ

)∑N
j=1 exp

( sij
τ

) , (7)

Finally, with a loss coefficient λ, the total loss is defined as

Ltotal = λ
(
LNLL + LNT-Xent

)
. (8)

After training the effect prediction model, zo and za are
found by binarizing the latent variables from the outputs of
the encoders.

C. Planning with the Discovered Action Primitives

Breadth-first tree search (BFS) is used for planning where
the branch factor corresponds to the number of discovered
action primitives. The goal is to reach a given goal state sg
(within an error threshold) from an initial state si by an action
sequence π. The states are defined by the absolute positions
of all the objects in the environment. The planner iteratively
expands the candidate sequences. If the state achieved by an
action sequence π is within an error margin of sg , the sequence
is accepted as a solution. If no suitable sequence is identified
within a maximum search depth, the algorithm terminates,
indicating a failure to generate the plan with the learned
action primitives. After finding an action sequence, each action
should be executed, and for this, their continuous parameters
should be found. In the next section, we will provide the details
of the parameter distillation procedure.

D. Distilling Parameters from Discovered Action Symbols

Inspired by [22], we use an optimization-based distillation
process to convert the symbols to continuous action param-
eters. Initially, we start with the set of action parameters
that were used to train the effect prediction model. These
parameters are the initial estimates for the distilled action
parameters. Using the model’s trained action encoder, we
generate the action embeddings for these action parameters.
We freeze the action encoder’s weights and optimize only the
action parameters using Stochastic Gradient Descent (SGD).
The optimization is to minimize the mean squared error
(MSE) between the model’s encoded action embedding and
the target binary symbol. After convergence, we select the
candidate action parameter with the lowest error as the distilled
action primitive of action symbol za. This process inverts the
mapping ϕa(a) and maps the discrete symbols to continuous
parameters, which allows the planner to use these primitives
during task execution for achieving the given task.

E. Curiosity-Based Exploration Module

The robot interacts in a continuous action space, where
efficient exploration is critical. In order to efficiently explore
the continuous action space and learn meaningful action primi-
tives, we propose to use a curiosity-based exploration approach
based on exploration by selecting actions that maximize en-
tropy in the effect prediction. Our effect prediction model
outputs a Gaussian distribution over the effect, and the entropy
of this distribution represents the uncertainty of the model
regarding the predicted effect of an action. Therefore, by
maximizing the entropy of the effect distribution, the method
prioritizes actions that the model is uncertain. This way, we
aim to accelerate the learning process, encourage the discovery
of diverse and effective action primitives, and show how an
intrinsic reward signal can make the model learn instead of
relying only on extrinsic rewards.

Our proposed algorithm for curiosity-based exploration is
given in Algorithm 1. In each exploration step, we uniformly
sample a set of candidate action parameters. For each can-
didate, we forward it to our effect prediction model and
obtain a distribution over the predicted effects. The entropy
of the distributions for each dimension is calculated, the mean
entropy of all dimensions is found, and the candidate action
with the maximum mean entropy is selected. We follow a
greedy policy, selecting this action a to execute and save its
effects to train the effect prediction model further.

III. EXPERIMENTS

The experiments are performed using a UR10 manipulation
robot in a PyBullet simulation environment. In this section,
we detail the experimental setup, evaluation, and comparisons
with planning.

A. Experimental Setup

The encoders of our network have four hidden layers
with 128 nodes per layer. Tanh activation function is used
to constrain the embeddings within the range [-1, 1]. The



Fig. 2. Overview of the proposed effect prediction model. The first image shows the PyBullet environment with an example object. The blue, green, and
red dots show the start, middle, and end points of the robot’s trajectory, respectively. The action and object encoders generate latent embeddings, which are
then concatenated. The decoder uses these combined embeddings to predict a Gaussian distribution over the object displacement caused by the action. The
symbols are then extracted from the latent embeddings with the given method in Section II-D.

Algorithm 1 Curiosity-Based Exploration
Require: Object parameters o ∈ R4

Ensure: Selected action a∗ ∈ R12

1: Set number of candidate actions: N
2: for i = 1 to N do
3: Uniformly sample action parameters

a(i) ∼ U
(
[−0.05, 0.05]12

)
4: Create normal distributions for the effect by forwarding

the model
p(e | a(i), o) = N

(
e;µ(a(i), o), σ2(a(i), o)

)
5: for j = 1, 2, 3 do
6: Calculate entropy for each axes x, y, z

Hj(a
(i), o) = 1

2 log
(
2πe σ2

j (a
(i), o)

)
7: end for
8: Get the mean entropy

H̄(a(i), o) = 1
3

∑3
j=1 Hj(a

(i), o)
9: end for

10: Select the action with the maximum entropy
a∗ = argmaxi∈{1,...,N} H̄(a(i), o)

11: return a∗

object encoder’s output dimension was set to 2-bits, allowing
up to 22 = 4 distinct object categories, while the action
encoder produces 3-bit output, allowing at most 23 = 8
distinct action primitives. The concatenated embeddings are
normalized using Layer Normalization and processed through
the decoder, which has 4 hidden layers consisting of 128 nodes
per layer. The model is trained with a mini-batch size of 512,
a learning rate of 1e-5, and gradient clipping. The loss is the
sum of LNLL and LNT-Xent with a loss coefficient λ = 0.01.

During each step of our Curiosity-Based Exploration, an
object with a random size and type (hollow or non-hollow) is
initialized. Using Algorithm 1, from a set of 2000 randomly
sampled candidate action parameters, the action sequence a∗

that maximizes the effect prediction entropy is selected and
executed. The displacement of the object is saved as the effect.
At every 512 steps, the effect prediction model is trained with

the gathered (a, o, e) tuples for 10 update epochs. The entire
exploration process takes 10,000 steps. After exploration,
distilled parameters for all action symbols are obtained with
the algorithm in Section II-D. The parameters are executed
on the robot to annotate the learned high-level action primi-
tives. Then, using the learned high-level action primitives, we
perform single- and multi-object plannings in Section III-E.

B. Baselines

To measure the performance of our Curiosity-Based Model,
we compare our findings with two baseline models: Random
Exploration Model and Active Learning Model [23]. The Ran-
dom Exploration Model is based on executing randomly sam-
pled action parameters in randomly generated environments.
The Active Learning Model is based on training the effect
prediction model with only the actions that have high effects
on the objects in the environment. It is a task-specific approach
to avoid noise in the training dataset. Both approaches predict
the effect directly instead of distribution, hence overlooking
the uncertainties in the predicted effects.

C. Model Prediction Error

To evaluate our curiosity-based exploration module, a test
dataset of 2400 samples generated with random exploration
is used. Each sample includes random action parameters, a
randomly generated environment state, and the effect of the
action on the target object after execution. Interactions where
the total effect is smaller than 0.8 along the three axes were
excluded to reduce noise. In our curiosity-driven approach, the
model predicts a distribution over the effect, and in this sec-
tion, we use the mean of the distribution as the predicted effect.
In the Random Exploration module and the Active Learning
model, the output of the effect prediction model is used as
the predicted effect, as they do not produce a distribution. We
find the absolute error between this predicted effect and the
ground truth effect separately for each dimension. When the
model prediction errors are compared, as shown in Table I, our
curiosity-based exploration approach has lower errors on all



TABLE I
MODEL PREDICTION ERRORS IN X, Y, Z AXES. UNITS ARE IN METERS.

Curiosity-Based M. Active Learning M. Random Exploration M.

x 0.0843 0.0917 0.1236

y 0.0828 0.1090 0.1406

z 0.1540 0.1556 0.2210

dimensions, meaning that it can provide a better generalization
to the unseen data compared to the baseline approaches.

D. Discovered Action Primitives

After the exploration process, to understand and evaluate
the diversity of the discovered action primitives, we first
visually observe their prototypical executions and report their
qualitative performance. To observe the executions of the
action primitives, we distill the action parameters with the
algorithm given in Section II-D. Some examples of high-
level actions learned with our Curiosity-Based model are given
in Figure 3. To compare the learned primitives with other
baselines, we performed the same experiment with the Active
Learning Module and the Random Exploration Module that
were explained earlier. The comparison is given in Table II.
As shown, our method learned six different action primi-
tives, including different push primitives, grasp, and release
actions, whereas the baselines could discover four or three of
these primitives. The random exploration module learned less
meaningful actions since the continuous action space consists
of mostly noisy and null actions. The curiosity-based model
performed the best since it allows for selecting novel actions,
resulting in a diverse set of high-level skills. With this, we can
conclude that our Curiosity-Based Model has learned a richer
set of high-level action primitives than the other two baseline
models.

TABLE II
LEARNED ACTION PRIMITIVES

Curiosity-Based M. Active Learning M. Random Exploration M.
right push + + +
left push + + +

forward push + + -
pull + + -

grasp + - +
pick and place + - -

E. Planning Performance

In this section, we analyze the planning and plan execution
performance of our model and provide a comparison with the
baselines. For this, we generated random goal states and ran
the planner to generate plans using learned action primitives.
We consider single- and double-object planning tasks to verify
the effectiveness of the learned action primitives. We generated
100 planning tasks, and for each task, a randomly initialized
state, random action parameters, and the resulting state were
recorded. In single-object tasks, the environment consists of
only one object, and in double-object tasks, the state has two

Fig. 3. Example of the learned action primitives in the Curiosity-driven model.
From top to bottom; pick up, forward push, left push, pull.

TABLE III
SUCCESSFUL PLAN RATIO OF THE MODELS

Curiosity-Based M. Active Learning M. Random Exploration M.

Single-Object 82% 56% 13%

Double-Object 59% 38% 9%

objects, and the planner should decide on the target object to
execute an action primitive. Then, with the collected initial and
goal state pairs, we perform the planning (with a maximum
search depth of 3 and an error threshold of 0.05) in all three
models. The success rate is defined as the percentage of plans
that successfully reach the goal state. The success rates of
our Curiosity-Based model, the Active Learning model, and
the Random Exploration model are reported in Table III. As
shown, our model outperformed the baseline models, telling us
that the learned high-level action primitives are more versatile.

Figure 4 shows sample plans generated by our planner with
the learned primitives in the Curiosity-Based model. The first
row shows a single-object plan consisting of left push and pull
primitives, while the second row shows a two-object plan that
has pick & place, pull, and left push primitives.

IV. CONCLUSIONS

In this study, we introduced a framework for discovering
diverse high-level action primitives effective in next-state
prediction and planning. We proposed a deep neural network



Fig. 4. Example plans generated by BFS with the learned primitives in
Curiosity-Based Model. The goal state is shown transparently in the first
column, and the initial state is shown so in the last column to emphasize the
effect.

to predict a Gaussian distribution over the effect of an action
on an object. To efficiently train the model, we designed
a curiosity-based exploration module that selects the most
informative actions (that maximize the entropy in the predicted
effect distribution). We utilized the learned action and object
symbols to perform single- and double-object manipulation
tasks with a Breadth-First Search (BFS)-based planner. We
showed that when the robot explores its environment using
an entropy-based curiosity signal, compared to the random
exploration module and effect-maximization, our method has
better generalizing capability in predicting effects and learns
a more useful and diverse set of meaningful high-level action
primitives. We also showed that the action primitives found by
our method can be effectively used by the symbolic planner in
generating plans to achieve various single and paired object
tasks and in executing these plans thanks to our parameter
distillation approach.

In our work, we focused on the effects of a single object’s
displacement during exploration and training. Future work
can extend this to include the relations between objects [5]
to reason more comprehensively in multi-object tasks. Addi-
tionally, although the BFS-based planning strategy performed
reasonably well in our experiments, it may work slower when
new objects or more complex tasks are introduced. In the
future, we plan to translate the learned abstractions and rules
into Planning Domain Definition Language (PDDL) [7] and
use efficient off-the-shelf AI planners [24], [25].
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